Carbenoxolone inhibits Pannexin1 channels through interactions in the first extracellular loop

نویسندگان

  • Kevin Michalski
  • Toshimitsu Kawate
چکیده

Pannexin1 (Panx1) is an ATP release channel important for controlling immune responses and synaptic strength. Various stimuli including C-terminal cleavage, a high concentration of extracellular potassium, and voltage have been demonstrated to activate Panx1. However, it remains unclear how Panx1 senses and integrates such diverse stimuli to form an open channel. To provide a clue on the mechanism underlying Panx1 channel gating, we investigated the action mechanism of carbenoxolone (CBX), the most commonly used small molecule for attenuating Panx1 function triggered by a wide range of stimuli. Using a chimeric approach, we discovered that CBX reverses its action polarity and potentiates the voltage-gated channel activity of Panx1 when W74 in the first extracellular loop is mutated to a nonaromatic residue. A systematic mutagenesis study revealed that conserved residues in this loop also play important roles in CBX function, potentially by mediating CBX binding. We extended our experiments to other Panx1 inhibitors such as probenecid and ATP, which also potentiate the voltage-gated channel activity of a Panx1 mutant at position 74. Notably, probenecid alone can activate this mutant at a resting membrane potential. These data suggest that CBX and other inhibitors, including probenecid, attenuate Panx1 channel activity through modulation of the first extracellular loop. Our experiments are the first step toward identifying a previously unknown mode of CBX action, which provide insight into the role of the first extracellular loop in Panx1 channel gating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional and Structural Study of Pannexin1 Channels

of a dissertation at the University of Miami. Dissertation supervised by Professor Gerhard Dahl No. of pages in text. (85) Pannexins are vertebrate proteins with limited sequence homology to the invertebrate gap junction proteins, the innexins. However, in contrast to innexins and the vertebrate connexins, pannexins do not form gap junction channels. Instead they appear to solely function as un...

متن کامل

Carbenoxolone inhibits mechanical stress-induced osteogenic differentiation of mesenchymal stem cells by regulating p38 MAPK phosphorylation

The aim of the present study was to explore the effects of pannexin1 (Px1) protein channels on osteogenic differentiation of mesenchymal stem cells (MSCs) under mechanical stress stimulation. MSCs were isolated from Sprague Dawley rats (3 weeks old, weighing 100-120 g) and cultured in vitro. A safe concentration of carbenoxolone was determined (CBX, an inhibitor of Px1 channels; 100 µM) on MSCs...

متن کامل

Innexons, Membrane Channels for ATP, Control Microglia Migration to Nerve Lesions

of a dissertation at the University of Miami. Dissertation supervised by Professor Kenneth Muller. No. of pages in text. (108) ATP released upon nerve injury is an important chemotactic activator of microglia; however, the source of the extracellular ATP is uncertain. In large glial cells such as astrocytes, chemical or mechanical stimulation or injury causes an intracellular calcium wave that ...

متن کامل

Gap junctions of the hippocampal CA1 area are crucial for memory consolidation

Introduction: Gap junctions are specialized cell–cell contacts between eukaryotic cells through which they communicate. This type of communication has the potential to modulate memory process. We evaluated the effects of the gating of the hippocampal CA1 area gap junction channels on memory consolidation, using passive avoidance task. Materials and Methods: 72 adult male Wistar rats were distri...

متن کامل

AJP: Cell Physiology P2X7 receptor-Pannexin1 complex: Pharmacology

Pannexin1 (Panx1), an ortholog to invertebrate innexin gap junctions, has recently been proposed to be the pore induced by P2X7 receptor activation. We explored the pharmacological action of compounds known to block gap junctions on Panx1 channels activated by the P2X7R and the mechanisms involved in the interaction between these two proteins. Whole cell recordings revealed distinct P2X7R and P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 147  شماره 

صفحات  -

تاریخ انتشار 2016